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Abstract. We calculate numerically the exact relaxation spectrum of the totally asymmetric
simple exclusion process (TASEP) with open boundary conditions on lattices up to 16 sites. In the
low- and high-density phases and along the nonequilibrium first-order phase transition between
these phases, but sufficiently far away from the second-order phase transition into the maximal-
current phase, the low-lying spectrum (corresponding to the longest relaxation times) agrees well
with the spectrum of a biased random walker confined to a finite lattice of the same size. The
hopping rates of this random walk are given by the hopping rates of a shock (a domain wall
separating stationary low- and high-density regions), which are calculated in the framework of
a recently developed non-equilibrium version of Zel’dovich’s theory of the kinetics of first-order
transitions. We conclude that the description of the domain wall motion in the TASEP in terms
of this theory of boundary-induced phase transitions is meaningful for very small systems of the
order of ten lattice sites.

1. Introduction: domain wall dynamics in driven diffusive systems

In the context of equilibrium phase coexistence or when studying the dynamical origin
underlying critical non-equilibrium phenomena such as coarsening processes the question
arises to which extent large-scale notions such as domain size or interface width really play
a role in very small systems. This becomes important, for example, if one tries to relate a
mesoscopic description of a many-body system in terms of lattice gas models [1–3] to real
systems where the size of particles is not necessarily much smaller than the entire region within
which they interact. More pointedly—and particularly so in low dimensional systems—the
question is when fluctuations in the mesoscopic variables become so large compared to system
size that a description in terms of coarse-grained degrees of freedom (intermediate between the
mesoscopic variables and system size) loses its meaning? This is the issue we wish to address
in a specific nonequilibrium context, namely, the dynamics of a domain wall (a coarse-grained
notion) in a one-dimensional lattice gas model kept far from equilibrium by choosing open
boundary conditions which support a finite steady-state current. Driven diffusive systems of
this kind have become relevant in the study of ion channels [4, 5], biopolymers [6–8], traffic
flow [9] and other complex systems of essentially one-dimensional topology [10].

The prototypical example studied here is the totally asymmetric simple exclusion
process (TASEP), a lattice gas model for which an exact solution of the steady state properties
has been found [11–13]. In this model each lattice site can be occupied by at most one particle.
Particles attempt to move to the right with unit rate after an exponentially distributed random
waiting time with unit mean. If the neighbouring site is empty, the attempt succeeds, otherwise
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it is rejected. At site 1 particles are injected with rate α and at site L particles are removed
with rate β. The bulk stationary states (characterized by a spatially constant bulk density ρ)
are uncorrelated. Hence there is a stationary particle current of strength

j = ρ(1 − ρ) (1)

which has a maximum j ∗ = 1/4 at ρ∗ = 1/2. Considering the bulk density as order parameter,
the nonequilibrium phase diagram of the model has a first-order phase transition between a
low-density phase with bulk density ρ = α < 1/2 and a high-density phase with bulk density
ρ = 1 − β > 1/2 along the curve α = β < 1/2. Second-order transitions take place from
both phases to a maximal current phase with bulk density ρ = 1/2 defined by the region
α > 1/2, β > 1/2.

Which bulk steady state the system selects, i.e. the stationary bulk density as a function
of the boundary densities ρ− = α, ρ+ = 1 − β, can be understood in terms of the interplay of
density fluctuations and the motion of a shock [14,15]. This shock, marking a rapid increase of
the local density, may be seen as a domain wall separating a stationary (not equilibrium!) region
of low density ρ− to another stationary region of high density ρ+. We have shown (assuming
the system size to be large) that the (non-equilibrium) first-order transition at α = β can
be explained in a way similar to the Zel’dovich theory of the kinetics of (equilibrium) first-
order transitions [16]. The domain wall motion is understood as diffusion of the ‘size of
the high-density segment’. The ‘elementary processes’ that change the length of the filled
region consist of hopping of the domain wall to the right and left at rates D± respectively.
Postulating continuous-time random walk dynamics we conjectured the individual rates to
take the values [14]

D± = j±/(ρ+ − ρ−) (2)

with incoming and outgoing currents j± = j (ρ±) given by (1). The mean velocity of the
domain wall

vs = D+ − D− = j+ − j−

ρ+ − ρ− (3)

is determined by mass conservation. Since in general j+ �= j− the domain wall performs
a biased random walk (figure 1), leaving the bulk of the system in a region of high density
ρ+ if the domain wall velocity is negative and in a region of low density ρ− if vs is positive.
A first-order transition takes place for j+ = j−. In this case the domain wall performs an
unbiased random walk, leaving the bulk of the system in a state of coexistence of the low- and
high-density segments.

In this theory, which describes the approach to stationarity (i.e. the late-time behaviour
of the model), the domain wall is imagined to be a soliton-like collective mode of the many-
body system which essentially behaves like a single particle and remains stable at all times.
This picture is not restricted to the TASEP for which the properties of the shock are well
understood [17–20], but is believed to be generic for driven one-component systems as long as
there is a stable domain wall [15]. In view of the coarse-grained nature of this approximation it
should be recognized that the assignment of the domain wall position to a lattice site (which is
implicit in the random walk picture) leaves much room for arbitrariness; it is analogous to the
problem of defining the location of the interface between coexisting phases in an equilibrium
system [21]. Yet the theory explains the correct location of the phase transition lines in
many driven diffusive systems [3], and also reproduces the exactly known shock diffusion
coefficient [22] of the TASEP defined on an infinite lattice

D = 1

2
(D+ + D−) = 1

2

j+ + j−

ρ+ − ρ− (4)
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Figure 1. (a) Schematic presentation of a (0|1) domain wall at position x, connecting a
homogeneous stationary phase of low density ρ− < 1/2 with a stationary phase of high density
ρ+ > 1/2. The domain wall hops one lattice unit to the right with rate D+ and to the left with rate
D−. In figure (b) the (m|1)-domain wall connects the inhomogeneous maximal-current phase with
bulk density ρ = 1/2 with a high-density phase of density ρ+ > 1/2. Here the hopping rates lx , rx
are space dependent, approaching the bulk values D± far away from the boundary. The reference
profile ρ(x) at the edge of the maximal-current phase AT the point (α, 1/2), independent of β. The
asymptotic densities at the boundaries of a finite system are imagined to be fixed at all times.

and the exact localization length [12, 13] of the boundary density profile in the TASEP with
open boundaries.

On the other hand, some simple implications of this dynamic non-equilibrium domain wall
theory have not yet been tested. If the late-time behaviour of a very large system can really be
viewed as being dominated by the domain wall motion and if this domain wall behaves like a
single-particle mode, then one expects the longest relaxation times in the many-body relaxation
spectrum of the TASEP with open boundaries to be given by those of a single random walker
with hopping rates (2). Once this is established the question arises of just how large the system
has to be for this non-rigorous description to be reasonably accurate.

With this in mind we study here the approach of the TASEP to its stationary nonequilibrium
state in terms of the intrinsic relaxation times of the stochastic many-body process. First we
derive the random walk dynamics of a domain wall that one expects from the theoretical
scenario (section 2). The comparison of the theoretically predicted relaxation times with those
found numerically is presented in section 3. These results are evaluated with emphasis on the
degree of accuracy of the theory in small systems in section 4. Some concluding remarks are
presented in section 5. Without loss of generality we consider throughout this paper the regime
β < 1/2. The relaxation times in that part of the domain α < 1/2 which is not discussed here
follow from particle–hole symmetry.

2. Random walk of a domain wall

The position of the domain wall is viewed as a lattice site x∗ located between two stationary
regions of average densities ρ±. We stress that we do not provide a definition of what this
lattice site should be in a given configuration of the lattice gas, defined by discrete occupation
numbers nx(t) = 0, 1. For the ASEP such a site could be defined by the position of a second-
class particle [17] which is driven into a region of maximal density gradient, but in the general
case there is no analogous construction and hence we do not make use of it. We only assume
that such a position could be defined and explore the consequences of this assumption for the
relaxation spectrum of the full process.

Ignoring any possible internal structure of the ‘interface’, i.e. the intrinsic order parameter
profile, we consider the whole region x � x∗ to the right of the domain wall position to belong
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to the ρ+-segment and the whole of the region to the left (x < x∗) to belong to the ρ−-segment
(figure 1). The domain wall position in a system of L sites then can take L+ 1 values. Position
x = 1 corresponds to the system being completely in the high-density phase, while x = L + 1
corresponds to a pure low-density phase. We remark that due to a quantum algebra symmetry
of the process this highly idealized picture of the domain wall structure is exact for a special
relation between ρ+ and ρ− [20,23], but not in general [19] and not in the cases studied below.

We start with a discussion of the domain wall dynamics in the bulk of a very large system.
First we consider the case ρ− = α < 1/2, ρ+ = 1−β > 1/2, corresponding to a (0|1) domain
wall in a notation similar to that of [14].

According to [14] the domain wall performs a lattice random walk with the bulk rates (2),
but reflecting boundary conditions since the domain wall can never leave the system because
of the fixed boundary densities. At the boundary sites x = 1 and x = L + 1 one therefore
expects a left-hopping rate l1 = 0 at site 1 and a right-hopping rate rL+1 = 0 at site L + 1. In
the simplest approximation one assumes bulk dynamics for the remaining two boundary rates:
one takes r1 = D+ as the right-hopping rate at site 1 and lL+1 = D− as the left-hopping rate at
site L + 1. At all other sites close to the boundary the hopping rates are assumed to equal the
bulk rates. The probability distribution P(x) for the position of the domain wall then satisfies
the master equation

d

dt
P (x, t) = D−P(x + 1, t) + D+P(x − 1, t) − (D+ + D−)P (x, t)

d

dt
P (1, t) = D−P(2, t) − D+P(1, t)

d

dt
P (L + 1, t) = D+P(L, t) − D−P(L + 1, t).

(5)

Here 2 � x � L. The stationary distribution satisfies detailed balance and has the form

P ∗(x) ∝ u2x (6)

with

u2 = D+/D−. (7)

Thus the stationary probability of finding the domain wall decays exponentially from the
boundary towards which it is biased.

To obtain the relaxational behaviour we reformulate the reflection property by extending
the range of validity of the bulk equation to all integers and at the same time imposing the
boundary conditions D+P(0, t) = D−P(1, t) and D+P(L + 1, t) = D−P(L + 2, t) for all
times t . This ensures that both the bulk equation and the boundary equations are satisfied at
all times. The master equation can now be solved with a plane wave ansatz of the form

Px(t) =
∑
p

Ap(0)e
−εt (eipx + Bpu

2xe−ipx). (8)

This gives the reciprocal relaxation times εp = D+(1 − e−ip) + D−(1 − eip) as a function of
the ‘momentum’ p. Satisfying the boundary conditions fixes Bp = −(1 − u−2eip)/(1 − e−ip)

and requires

e2ip(L+1) = u2L+2. (9)

The solution of this equation yields quantized complex values pn = πn/(L + 1)− i ln u, with
n = 1, . . . , L. Thus the spectrum (9) is real and one finds the relaxation times

τn =
[
D+ + D− − 2

√
D+D− cos (πn/(L + 1))

]−1
. (10)
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These relaxation times depend on both α = ρ− and β = 1 − ρ+ through the relation (2). In
the thermodynamic limit one obtains the longest relaxation time

τ =
[
D+ + D− − 2

√
D+D−

]−1
. (11)

This quantity is finite for a biased random walk with D+ �= D− (finite-size corrections are of
order 1/L2), but diverges proportionally to L2 for the symmetric case D+ = D−.

For α > 1/2 the theory predicts a (m, 1)-domain wall [14] which is composed of a
segment corresponding to the high-density phase with ρ+ = 1 − β > 1/2 on the right and the
maximal current phase (m) on the left with bulk density ρ = 1/2 for all α. The m-segment
does not have constant density close to the boundary, as was assumed in the discussion of the
domain wall dynamics above. Instead, the density profile decays rather slowly proportional
to 1/

√
x from the true left-boundary value α to its bulk value 1/2. In the framework of the

domain wall picture the bulk density of the left (maximal current) segment plays the role of
ρ− which is now understood as an effective left-domain-wall density. Hence ρ− = 1/2 �= α

for all α > 1/2 and one expects for a large system relaxation times (10) which do not depend
on α. However, due to the slow algebraic decay of the density profile one can also expect the
relaxational behaviour to be dominated by the bulk dynamics only in rather large systems of
the order of thousands of sites.

3. Relaxation spectrum of the TASEP

The relaxation times of the TASEP can be calculated by diagonalizing the time evolution
operator H of the process for finite systems. By construction, the lowest eigenvalue of H
is zero (with the associated eigenvector being the stationary distribution) while the real parts
of the higher eigenvalues are the reciprocals of the relaxation times. Hence the low-lying
excitations correspond to the longest-living modes. The generator H of the ASEP is closely
related to a non-Hermitian ‘quantum’ Hamiltonian of an anisotropic ferromagnetic spin- 1

2
Heisenberg chain [24]. Following standard procedures described in detail in [3] we use the spin-
1
2 Pauli matrices σx,y,z

k acting on site k of the chain and define the particle annihilation/creation
operators s±

k = (σ x
k ± iσy

k )/2 and the projectors nk = (1 −σ z
k )/2 on particles and vk = 1 −nk

on vacancies respectively. For the TASEP with open boundaries one then has

H =
L−1∑
k=1

(nkvk+1 − s+
k s

−
k+1) + n1 − s+

1 + vL − s−
L . (12)

Notice that due to the lack of detailed balance (corresponding to the intrinsic nonequilibrium
nature of the process) the excitation spectrum may have complex eigenvalues which appear in
complex conjugate pairs.

For a periodic system exact finite-size analysis of the Bethe ansatz equations for the
spectrum of H yields longest relaxation times increasing with system size as Lz with the
dynamical exponent z = 3/2 [24, 25]. This analysis, however, does not provide information
about the domain wall motion since the existence of a stable domain wall requires non-periodic
boundary conditions with different boundary densities kept fixed at all times. This is realized in
the open system outside the maximal current phase α, β > 1/2, inside which a domain wall is
not stable [3] and longest relaxation times with the same finite-size scaling properties as in the
periodic system are expected. This is in agreement with numerical finite-size estimates [26].

Like the periodic system, the open quantum spin chain (12) is also an integrable
model [27, 28]. However, due to the lack of particle number conservation no analogue of
the Bethe ansatz equations has been found yet. For this reason we are not able to calculate the
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exact asymptotic behaviour of the low-lying part of the spectrum. However, it is possible to
calculate the eigenvalues of small systems up to approximately 20 lattice sites by numerical
diagonalization of H . These eigenvalues allow us to assess the validity of the domain wall
theory in small systems.

Since the generator H is an asymmetric matrix the numerical diagonalization is more
difficult than in the standard case of symmetric or Hermitian matrices. Nevertheless there are
methods available which allow us to perform a numerically exact calculation of the eigenvalues.
The results presented below have been obtained applying two methods. For system sizes up
to L = 10 we used a complete diagonalization routine from the standard package LAPACK.
For larger systems we applied an iterative Arnoldi algorithm [29]† to calculate the low-lying
part of the spectrum.

A chain of L sites has 2L eigenvalues and hence 2L − 1 excited states. On the other hand,
the domain wall theory predicts only a subset of L eigenvalues corresponding to excited states.
In order to compare the theoretical prediction with the spectrum of the TASEP it is necessary
to identify those eigenvalues of the TASEP which correspond to the postulated domain wall
modes. To this end we note that for α, β much smaller than 1/L the domain wall picture
becomes exact [30]. Moreover, at such small values of α and β the full random walk spectrum
(which has eigenvalues of the order of α+β) is below the remaining excitation spectrum of the
TASEP, which from perturbation theory can be seen to have eigenvalues of the order of unity
and larger. Using this property we plot the low-lying part of the spectrum of the TASEP as a
function of α and β and identify as the domain wall eigenvalues for finite α, β those which
become the known domain-wall eigenvalues at very small α, β.

In figure 2 we show the low-lying spectrum for several system sizes. We plot real parts of
the eigenvalues along two curves α = β and β = α/2 in the region α < 1/2, corresponding
to a (0|1) domain wall. One observes many level crossings, which is not surprising because
of the integrability of the system. Also shown are the eigenvalues of a random walker given
by (10). For sufficiently small α they coincide with the lowest-lying eigenvalues of the TASEP.
The agreement is very good up to α ≈ 1/L along the line α = β and for significantly larger
values of α (up to α ≈ 2/L) along the line β = α/2. This is quite remarkable and encouraging
with regard to the robustness of the random walk model as good agreement could be expected
from perturbation theory only for both α, β significantly less than 1/L.

Before discussing further how these random walk eigenvalues relate to the TASEP
spectrum, we note some other spectral properties which we found intriguing, but for which we
have no explanation.

(1) As α increases some real eigenvalues merge to form a pair of complex conjugate
eigenvalues of which only the real part is shown. A similar phenomenon was observed
as a function of field strength in the Rubinstein–Duke model [7], which is a two-species
driven lattice gas describing the motion of an entangled polymer chain under the influence
of an external electrical field as, for example, in gel electrophoresis. We do not have an
explanation for this phenomenon except to say that complex eigenvalues are related to
the presence of currents (corresponding to absence of detailed balance). It is not clear,
however, why these special complex pairs appear only for sufficiently high α. Other
complex conjugate pairs appear as soon as α > 0.

(2) In all system sizes considered, alternating eigenvalues of the random walk branch merge
with another real eigenvalue (not belonging to the random walk branch) to form a complex
conjugate pair at some value of α. Up to this value of α the agreement of the TASEP

† A sophisticated package ARPACK, which implements the Arnoldi method, can be found in [29] in the directory
pub/people/software/ARPACK.
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eigenvalue with the corresponding random walk eigenvalue is good; for larger α it quickly
deteriorates.

(3) For α = β the total number #L(α) of real eigenvalues seems to follow some interesting
pattern. For fixed α the difference $ = #L − #L−1 appears to approach a constant
value for even values of L as L increases. This difference decreases with increasing α:
$(0.05) = 6 for L � 6; $(0.1) = $(0.15) = 2 for L � 2; $(α) = 0 for α � 0.2 and
L � 6. At α = 1/2 one has $ = 0 for all L and #2L = 2L (see table 1).

4. Finite-size effects and late-time behaviour

We have remarked earlier that the simple domain wall picture in which one assumes the
existence of a lattice point separating a region of constant density ρ− to the left from a region
of constant density ρ+ to the right is literally applicable for a special relation between ρ+ and
ρ−. On this manifold, which is of interest only for partially asymmetric particle hopping, part
of the spectrum of the exclusion process is indeed exactly given by the spectrum of a single
random walker for any system size [23]. On the other hand, the results of [19] suggest for
generic values of densities an extended intrinsic structure of the domain wall. The associated
length scale (see below) is not related to the bulk correlation length—as is found in theories
for equilibrium systems such as van der Waals theory [31]—but is finite and non-zero in lattice
units. This in turn implies that one cannot expect to find the exact random walk spectrum in
a system of finite size. However, the random walk picture of the domain wall is still expected
to be valid for large enough systems, such that any hypothetical intrinsic width of the domain
wall that one might define is small compared to system size.

It is also clear from the expression (2) for the hopping rates that the random walk model
cannot possibly be valid in finite systems for domain walls with very small density difference
$ρ = ρ+ − ρ−. For the TASEP these rates diverge as one approaches α = 1/2 along the
first-order transition line α = β since ρ+ −ρ− → 0 as α = ρ− → 1/2. This would mean that
the domain wall position would fluctuate over distances much larger than system size in an
infinitesimal time step, thus rendering the notion of a domain wall moving within the system
meaningless.

We also recall that the domain wall theory describes the behaviour at very late times of
the evolution of the system. At earlier times relaxational modes within the domains are likely
to interfere with the motion of the domain wall as a single physical entity. Hence one expects
only the low-lying spectrum of the TASEP to coincide with the spectrum of a random walker,
not the full spectrum as one—surprisingly—has for the special relation between ρ+ and ρ−

referred to above.
What the domain wall theory therefore predicts for a small system—if applicable at all—

is the presence of a set of long relaxation times which are approximately given by those of
a random walker in a system of the same size for all parameter values, but with significant
(and eventually divergent) errors as one approaches the point α = β = 1/2. In particular, the
longest relaxation time, corresponding to the lowest excitation in the spectrum, is expected to
give the best match of all domain wall relaxation modes with those of a single random walker.
This picture is consistent with the numerical observations shown in figure 2. One expects
the agreement to improve for larger systems, which is also seen in the figures. The values
of α at which the deviation between a given random walk eigenvalue and the corresponding
eigenvalue of the TASEP exceeds some fixed value (say, 5%) increases slowly with increasing
length L.

One may also compare the reciprocal of the longest random walk relaxation time in
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Figure 2. Real parts of the eigenvalues λi of the TASEP generator H in equation (12) along the
two lines β = α (left) and β = α/2 (right), for L = 4, 7, 10, 13, 16 as given in the figures. Thick
solid curves represent real eigenvalues and thin solid curves are real parts of complex conjugate
pairs. The random-walker spectrum according to equation (10) is shown by dashed curves. For
L = 4, 7 all eigenvalues which have real parts up to unity are plotted, for L = 10, 13 we show the
60 lowest eigenvalues and for L = 16 only the 20 lowest ones.
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Figure 2. (Continued)

Table 1. Number of real eigenvalues in the full spectrum of the TASEP along the first-order
transition line α = β for different system sizes.

α = β L = 1 2 3 4 5 6 7 8 9 10

0.05 2 4 6 10 14 20 28 34 50 56
0.10 2 4 6 8 12 14 22 24 42 44
0.15 2 4 6 8 12 14 22 24 40 42
0.20 2 2 4 6 10 10 18 18 36 36
· · ·
0.50 2 2 4 4 8 8 16 16 32 32

the thermodynamic limit (11) with finite-size extrapolants of the lowest excitation of the
TASEP, calculated in [26] from the finite-size spectra using the Bulirsch–Stoer extrapolation
algorithm [32]. In table (2) we show extrapolants for β = 0.2 and various values of α together
with the theoretical random walk relaxation times (11). For α � 1/2, i.e. in the regime with a
(0|1) domain wall, the deviation is within the 0.1% range. In the regime α > 1/2 where the
theory predicts an (m|1) domain wall the deviation is approximately 20%. We recall that the
domain wall theory predicts relaxation times which become independent of α for α > 1/2.
This is in agreement with the extrapolants for α � 0.6.

We believe the much poorer agreement of the finite-size data for α > 1/2 with the
theoretical values (10) for the longest relaxation times to be partly due to finite-size effects
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Table 2. Theoretical reciprocal relaxation times in the thermodynamic limit (11) and extrapolated
reciprocal relaxation times from the spectrum of the TASEP for β = 0.2 and various values of α.
The extrapolated data are taken from table 1 of [26].

τ−1 × 102 α = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Theory 1.429 0.000 0.679 2.020 3.333 3.333 3.333 3.333 3.333 3.333
TASEP 1.428 −0.001 0.678 2.018 3.331 4.016 4.012 4.013 4.014 4.014

resulting from the inhomogeneous structure of the maximal-current segment. In order to
examine whether this conjecture produces corrections which improve the agreement, we
incorporate the inhomogeneous density profile into the random walk picture in the following
way. Rather than postulating constant hopping rates (2) we consider space-dependent hopping
rates lx and rx for left and right hopping respectively which are determined from the exactly
known density profiles in the pure phases on the basis of the domain wall picture. The master
equation for the domain wall position with right/left hopping rates rx, lx therefore reads

d

dt
P (x, t) = lx+1P(x + 1, t) + rx−1P(x − 1, t) − (rx + lx)P (x, t) (13)

with boundary condition P(0, t) = P(L + 2, t) = 0 for all times, corresponding to reflecting
boundaries l1 = rL+1 = 0. As shown below, these rates approach the constant values (2) in the
bulk as required by the original domain wall theory, but take into account the internal structure
of the postulated domains in the vicinity of the boundary. With the rates rx and lx thus specified
one can numerically compute the relaxation spectrum of the random walk defined by (15).

The calculation of the rates consists of four steps. (i) First we determine the stationary
domain wall probabilityP ∗(x) from the exactly known stationary density profile of the TASEP
within the domain wall picture. (ii) Next we reexpress the domain wall hopping rates in terms
of the stationary density profile using detailed balance. (iii) We require (3) to hold everywhere
except as the boundary sites as this relation is dictated by mass conservation. (iv) The remaining
free parameter in the choice of rates is determined by the requirement that the exactly known
diffusion coefficient (4) be recovered in the bulk of an infinite system.

Step (i). The stationary density profile ρ(x) has been calculated exactly for the TASEP [12,
13]. We denote by P ∗(x) the stationary probability of finding the domain wall at site x. Within
the domain wall picture the density profile is related to P ∗(x) through the relation

ρ(x) = ρ−(x) + (ρ+ − ρ−(x))
x∑

y=1

P ∗(y) (1 � x � L). (14)

Here ρ−(x) is a reference density profile which takes into account the postulated internal
structure of the pure left domain. For a (0|1) domain wall with α < 1/2 one has
ρ−(x) = ρ− = α whereas for an (m|1)-domain wall with α > 1/2 the reference profile
ρ−
α,β(x) = ρα,1/2 is the exact density profile of the TASEP at the onset of the maximal phase

at the point with coordinates (α, β = 1/2) (figure 1). Inverting this relation one obtains the
stationary domain wall probabilities

P ∗(1) = ρ(1) − ρ−(1)
ρ+ − ρ−(1)

P ∗(x) = ρ(x) − ρ−(x)
ρ+ − ρ−(x)

− ρ(x − 1) − ρ−(x − 1)

ρ+ − ρ−(x − 1)

P ∗(L + 1) = ρ+ − ρ(L)

ρ+ − ρ−(L)
.

(15)
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Step (ii). Detailed balance implies for the stationary solution P ∗(x) the relations

rx−1P
∗(x − 1) = lxP

∗(x) (16)

for 1 � x � L + 2. This does not fully specify the hopping rates in terms of the stationary
probabilities (15), but relates left- and right-hopping rates through a free function µ(x), which
takes positive values. One may write

l1 = 0 (17)

lx = µ(x)

P ∗(x)
for 2 � x � L + 1 (18)

rx = µ(x + 1)

P ∗(x)
for 1 � x � L (19)

rL+1 = 0. (20)

Step (iii). The stationary particle current does not depend on space because of particle number
conservation (except at the boundary sites) and hence the shock velocity (3) should be constant
in space as well. We implement this condition by requiring

rx − lx = vs = D+ − D− (21)

everywhere except at the boundary sites x = 1 and x = L+1. Together with (15) and (17)–(20)
this yields

µ(1) = 0

µ(x) = (D+ − D−)
[
ρ(x − 1) − ρ−(x − 1)

ρ+ − ρ−(x − 1)
+ ξ

]

µ(L + 2) = 0

(22)

with an arbitrary constant ξ for 2 � x � L + 1.

Step (iv). This constant is chosen to reproduce the exact bulk diffusion coefficient (4) with
constant bulk hopping rates rx = D+, lx = D− in the thermodynamic limit. This is equivalent
to requiring u2 = µ(x+1)/µ(x) (cf (7), (18) and (19)) for all x and yields µ(x+y) = u2yµ(x)

by iteration. In order to fix ξ we demand that this iterated relation be valid for the boundary
values x = 2, x + y = L + 1 of a very large system. In the thermodynamic limit the reference
densities entering this expression for ξ become constant, i.e. ρ−(x) = ρ− = α, and one finds

ξ = ρ(L) − ρ− − (ρ(1) − ρ−)u2(L−1)

(ρ+ − ρ−)(u2(L−1) − 1)
. (23)

It is straightforward to verify that with this choice of ξ one recovers in the bulk of a large
system the expected relations rx = D+ and lx = D− by using the exact expression for the
density profile ρ(x) [12].

Notice that as one approaches the line α = 1 − β the difference between ρ+ and the
local density at site 1 in the maximal current segment vanishes. Hence one obtains infinite
hopping rates and therefore a divergent spectrum. This limits the range of validity of this
phenomenological approach to the regime α < 1 − β. This is analogous to the divergence of
the bulk rates in the vicinity of the point α = β = 1/2.

In figure 3 we show the lowest eigenvalue of the TASEP along the line β = 0.25 together
with the predictions from (10) and the numerical calculation of the lowest eigenvalue of the
random walk (15) for L = 10. Sufficiently far away from α = 1 − β the agreement of the
eigenvalue of the space-dependent random walk is moderately better than that of the random
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Figure 3. The lowest TASEP eigenvalue (solid curve)
along the curve β = 0.25 for L = 10 compared
to predicitions of the random-walk theory. The thick
dashed curve shows the first eigenvalue according to
equation (10), and the thin dashed curve is the lowest
eigenvalue of the random walk in equation (15).

walk with constant rates, thus confirming the notion that the spatial structure of the density
profile contributes to finite-size effects. Also the higher eigenvalues of the inhomogeneous
random walk (not shown here) are closer to the corresponding eigenvalues of the TASEP than
those of the homogeneous random walk. The effect is small though, and we do not wish to
overemphasize its importance.

5. Conclusions

The numerical diagonalization of the stochastic generator of the TASEP with open boundary
conditions yields results which are in agreement with theoretical expectation resulting from
the notion that outside the maximal current phase the late-time dynamics of the TASEP are
governed by the diffusive motion of a domain wall. Within the regime of a (0|1) domain wall
(but not close to α = β = 1/2) it appears that this simple picture of a localized domain wall
is applicable in good approximation in systems as small as ten lattice sites. This suggests
that a domain wall indeed develops and that any internal structure of this domain wall such
as an intrinsic width is much less than ten lattice units in an extended parameter range. With
increasing system size this range increases. For small systems this observation is in qualitative
agreement with a related result on the stationary structure of the domain wall in an infinite
system which indeed suggests a very narrow region of inhomogeneity around the position
of the domain wall defined by the location of a second particle [19]. However, our results
are different not only in so far as we considered a finite system, but also in so far as did not
specifically define the position of the domain wall on a microscopic scale and as we drew
our conclusions not from stationary properties of the domain wall, but from its relaxational
behaviour predicted by the domain wall theory. We also stress that our approach yields the
exact longest relaxation time in the thermodynamic limit of the open system even though only
the steady state is exactly known.

We believe that similar analysis can be carried out for generic lattice gas models of driven
diffusive systems, thus circumventing the need for a (necessarily) ambiguous definition of the
domain wall position. Thus one obtains the longest relaxation times from the current–density
relation once the random walk dynamics of the domain wall have been determined. An open
question to be addressed in future work is the marked decrease in accuracy of the theoretical and
numerical relaxation times in the presence of the (m|1) domain wall. Since the inhomogeneous
structure of the m-segment is universal [33,34] it is likely that strong finite-size corrections to
the simple random walk picture are a generic feature of driven diffusive systems with an (m|1)
domain wall. The space dependence of the density profile may be a significant cause for the
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observed discrepancies, but our results are too preliminary to be regarded as conclusive in this
respect.
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Jülich.

References

[1] Spohn H 1991 Large Scale Dynamics of Interacting Particles (Berlin: Springer)
[2] Schmittmann B and Zia R K P 1995 Statistical mechanics of driven diffusive systems Phase Transitions and

Critical Phenomena vol 17, ed C Domb and J Lebowitz (London: Academic)
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